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- “The Roots of Inequality Estimating Inequality of
Opportunity from Regression Trees and Forests” is a joint
work with Paul Hufe (Ifo) and Daniel G. Mahler (World

Bank);



Ex-ante IOP estimation

-y=g(C)+e

- causality is conceptually and empirically excluded —
covariance of the outcome and circumstances’ variability

I0P = I(§)
I is a suitable inequality index;
9 is the predicted outcome distribution based on §(C);

g() is estimated on survey data.



Typical machine learning domain

- unknown data generating process;

- need to establish a reliable empirical link between a set of
controls and an outcome.



ML and IOP

ML: bias-variance trade-off;

IOP partial observability (downward bias) - sampling

variance (upward bias);
- ML: choose the model that minimizes out-of-sample MSE;

- IOP: choose the model that maximizes IOP out-of-sample
(Social Choice and Welfare - 2019 with Peragine and
Serlenga).



Trees

- among supervised learning algorithms regression trees seem

an obvious choice;

- a tree is an algorithm to predict a dependent variable
based on observable predictors (Morgan and Sonquist,1963;
Breiman et al.,1984);

- the population is divided into non-overlapping subgroups
based on a partition of the predictors’ space;

- prediction of each observation is the the mean value of the
dependent variable in the group.



What is a tree? cnt.

t}-
g3l

Class

Source: adapted from Varian, 2014



What is a tree? cnt.
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Tuning

- a very deep tree performs poorly out-of-sample;

- different solutions to prevent overfitting lead to different
type of trees;

- conditional inference trees condition each split on a
statistical test (Hothorn et al., 2006).



Conditional inference trees

- test the null hypothesis of independence,
H% = D(Y|Cp) = D(Y), ¥C, € C;

- no (adjusted) p-value < a — exit the algorithm;
- select the variable, C*, with the lowest p-value;

- test the discrepancy between the subsamples for each
possible binary partition based on C*;

- split the sample by selecting the splitting point that yields
the lowest p-value;

- repeat the algorithm for each of the resulting subsamples.



Opportunity trees: pros

the selection of C is no longer arbitrary;

the model specification is endogenous to data;

provide a test for the null hypothesis of EFOP;

tell a story about the opportunity structure.



Opportunity trees: cons

- misleading when two or more controls are highly
correlated;

- perform poorly if the data generating process is linear.



source: James et al. (2013)
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Random forests

- random forests improve tree’s predictive performance;
- a forest is made of hundreds of conditional inference trees;

- each tree uses a subsample of observations and, at each
splitting point, a subsample of controls.



data

- BEU-SILC 2011;

subsample: adults (30-60);

y: household equivalent disposable income;

- C: 21 questions about respondents’ background (sex, birth
area, proxies for socioeconomic status);

already used to estimate IOP.



The Netherlands
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Germany
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Random forests

- random forests of 200 conditional inference trees used to:

[] estimate IOp;

[0 quantify relative variable importance.



Predictive performance: trees Vs. forest
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Predictive performance: Parametric Vs. forest
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Estimates: Parametric Vs. forest
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Bonus tree: Australia, 2015
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Ex-post IOP
(joint work in progress with Guido Neidhofer)

- Conditional inference regression trees have two important
advantage

[0 they identify types;

[J they are parsimonious.
- having types with sufficient sample size one can move
further and estimate IOP consistently with Roemer’s
original theory;

- ex-post IOP definition is based on the estimation of the
type-specific outcome distribution.



Effort

According to Roemer the quantile of the type-specific
outcome distribution is a convincing proxy of the degree of
effort exerted;

ex-post IOP quantifies to what extent individuals exerting
the same degree of effort do not obtain the same outcome;

we use Bernstain polynomial approximation of the types’
ECDF to measure ex-post IOP.



Opportunity tree in 1992
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Opportunity tree in 2016
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IOP in 2016
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Conclusions

- many other ML approaches can be used:

O unsupervised learning such as Li Donni et al. (2015) and
Wu, Trivedi, Rao, Tang (2018)

O best subset regression (EqualChances.org)

O LASSO (or other regularization methods) as for example
Hufe et al. (2019)

- but there exists a second key trade off in ML: complexity
Vs. interpretability.



Additional material: trend in Germany
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Mean number of types (same sample size) 1992-2016
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IOP trend 1992-2016
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Mean IOP trend 1992-2016 (same sample size)
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Confidence bounds are the 0.975 and 0.025 quantiles of the
distribution of IOP estimates.




Additional material: sample size EU-SILC



Sensitivity to sample size: forests
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Sensitivity to sample size: trees
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Sensitivity to sample size: parametric
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