The Roots of Inequality Estimating Inequality of Opportunity from Regression Trees and Forests

Conference on Inequality of Opportunity University of Queensland & Griffith University 27-28 June, 2019

Paolo Brunori
University of Florence & University of Bari

- "The Roots of Inequality Estimating Inequality of Opportunity from Regression Trees and Forests" is a joint work with Paul Hufe (Ifo) and Daniel G. Mahler (World Bank);

Ex-ante IOP estimation

-
$$y = g(C) + \epsilon$$

- causality is conceptually and empirically excluded \to covariance of the outcome and circumstances' variability

$$IOP = I(\hat{y})$$

I is a suitable inequality index;

 \hat{y} is the predicted outcome distribution based on $\hat{g}(C)$;

 $\hat{g}()$ is estimated on survey data.

Typical machine learning domain

- unknown data generating process;
- need to establish a reliable empirical link between a set of controls and an outcome.

ML and IOP

- ML: bias-variance trade-off;
- IOP partial observability (downward bias) sampling variance (upward bias);
- ML: choose the model that minimizes out-of-sample MSE;
- IOP: choose the model that maximizes IOP out-of-sample (Social Choice and Welfare 2019 with Peragine and Serlenga).

Trees

- among supervised learning algorithms regression trees seem an obvious choice;
- a tree is an algorithm to predict a dependent variable based on observable predictors (Morgan and Sonquist,1963; Breiman et al.,1984);
- the population is divided into non-overlapping subgroups based on a partition of the predictors' space;
- prediction of each observation is the the mean value of the dependent variable in the group.

What is a tree? cnt.

Source: adapted from Varian, 2014

What is a tree? cnt.

Source: Varian, 2014

Tuning

- a very deep tree performs poorly out-of-sample;
- different solutions to prevent overfitting lead to different type of trees;
- conditional inference trees condition each split on a statistical test (Hothorn et al., 2006).

Conditional inference trees

- test the null hypothesis of independence, $H^{C_p} = D(Y|C_p) = D(Y), \forall C_p \in \mathbf{C};$
- no (adjusted) p-value $\langle \alpha \rightarrow \text{exit the algorithm};$
- select the variable, C^* , with the lowest p-value;
- test the discrepancy between the subsamples for each possible binary partition based on C^* ;
- split the sample by selecting the splitting point that yields the lowest p-value;
- repeat the algorithm for each of the resulting subsamples.

Opportunity trees: pros

- the selection of **C** is no longer arbitrary;
- the model specification is endogenous to data;
- provide a test for the null hypothesis of *EOP*;
- tell a story about the opportunity structure.

Opportunity trees: cons

- misleading when two or more controls are highly correlated;
- perform poorly if the data generating process is linear.

source: James et al. (2013)

Random forests

- random forests improve tree's predictive performance;
- a forest is made of hundreds of conditional inference trees;
- each tree uses a subsample of observations and, at each splitting point, a subsample of controls.

data

- EU-SILC 2011;
- subsample: adults (30-60);
- y: household equivalent disposable income;
- C: 21 questions about respondents' background (sex, birth area, proxies for socioeconomic status);
- already used to estimate IOP.

The Netherlands

Italy

Germany

Random forests

- random forests of 200 conditional inference trees used to:

 \square estimate IOp;

 \square quantify relative variable importance.

Predictive performance: trees Vs. forest

Predictive performance: Parametric Vs. forest

Estimates: Parametric Vs. forest

Variables importance

Bonus tree: Australia, 2015

Ex-post IOP (joint work in progress with Guido Neidhöfer)

- Conditional inference regression trees have two important advantage
 - \Box they identify types;
 - \square they are parsimonious.
- having types with sufficient sample size one can move further and estimate IOP consistently with Roemer's original theory;
- ex-post IOP definition is based on the estimation of the type-specific outcome distribution.

Effort

- According to Roemer the quantile of the type-specific outcome distribution is a convincing proxy of the degree of effort exerted;
- ex-post IOP quantifies to what extent individuals exerting the same degree of effort do not obtain the same outcome;
- we use Bernstain polynomial approximation of the types' ECDF to measure ex-post IOP.

Opportunity tree in 1992

Opportunity tree in 2016

IOP in 1992

IOP in 2016

Conclusions

-	many other ML approaches can be used:
	$\hfill\Box$ unsupervised learning such as Li Donni et al. (2015) and Wu, Trivedi, Rao, Tang (2018)
	\Box best subset regression (EqualChances.org)
	\square LASSO (or other regularization methods) as for example Hufe et al. (2019)

- but there exists a second key trade off in ML: complexity Vs. interpretability.

Additional material: trend in Germany

Sample size 1992-2016

Number of types 1992-2016

Mean number of types (same sample size) 1992-2016

IOP trend 1992-2016

Mean IOP trend 1992-2016 (same sample size)

Confidence bounds are the 0.975 and 0.025 quantiles of the distribution of IOP estimates.

Additional material: sample size EU-SILC

Sensitivity to sample size: forests

Sensitivity to sample size: trees

Sensitivity to sample size: parametric

